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a b s t r a c t 

It is apparent from the literature that the density of cross-links in collagenous tissue has 

a stiffening effect on the mechanical response of the tissue. This paper represents an ini- 

tial attempt to characterize this effect on the elastic response, specifically in respect of 

arterial tissue. Two approaches are presented. First, a simple phenomenological continuum 

model with a cross-link-dependent stiffness is considered, and the influence of the cross- 

link density on the response in uniaxial tension is illustrated. In the second approach, a 

3D model is developed that accounts for the relative orientation and stiffness of (two fam- 

ilies of) collagen fibers and cross-links and their coupling using an invariant-based strain- 

energy function. This is also illustrated for uniaxial tension, and the influence of different 

cross-link arrangements and material parameters is detailed. Specialization of the model 

for plane strain is then used to show the effect of the cross-link orientation (relative to 

the fibers) and cross-link density on the shear stress versus the amount of shear deforma- 

tion response. The elasticity tensor for the general (3D) case is provided with a view to 

subsequent finite element implementation. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. 
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1. Introduction 

Collagen is the most important structural protein in the body and is able to bear significant mechanical load within

fibrous tissues ( Fratzl, 2008 ). In such tissues collagen forms a network together with cross-links which, from the solid

mechanics point of view, contribute to the transmission of forces between the fibers of the network in both healthy and

aged tissues ( Andriotis et al., 2018 ). Collagen is a hierarchical material ( Fratzl, 2008; Fratzl and Weinkamer, 2007 ), which

is composed of a tropocollagen triple helix at the nanoscale, typically about 300 nm long. This tropocollagen is held to-

gether by intramolecular bonds. Aggregates of tropocollagen molecules connected together by cross-links form collagen fib-

rils which themselves group together to form collagen fibers. Enzymatic cross-links, which connect tropocollagen molecules

at their ends and provide stability of the structure, contribute to the mechanical resistance of a fibril under tension. On the

other hand non-enzymatic cross-links which can attach at any point along the length of a tropocollagen molecule can be
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detrimental to normal fibril function. The bonds may occur as bivalent and/or trivalent cross-links ( Eekhoff et al., 2018 ).

Under suitable loads bonds can be broken, and sliding between the filaments may occur. 

Clearly, cross-linking of collagen fibers has a significant effect on the response of the tissues within which the fibers are

embedded ( Buehler, 2008; Eekhoff et al., 2018; Yoshida et al., 2014 ); the influence of cross-links on the fracture mechanics of

collagen fibrils is documented in Svensson et al. (2013) . There is a lot of evidence, however, that indicates that the number

of cross-links increases with age, which is an important factor in the age-related stiffening of arterial walls ( Barodka et al.,

2011; Cantini et al., 2001 ). However, there is a lack of quantitative data concerning age-related changes of cross-linking in

biological tissues ( Hayashi and Hirayama, 2017 ). On the basis of bovine tail tendons the study of Willett et al. (2010) found

that aged tissues contain more mature covalent cross-links. According to the review article of Tsamis et al. (2013) there are

two different mechanisms responsible for the increase of cross-links: (i) increase of the amount of cross-linking amino acids

within collagen, and (ii) accumulating advanced glycation end-products (AGEs) which form protein-protein cross-links along 

the collagen molecules ( Hayashi and Hirayama, 2017; Wagenseil and Mecham, 2012 ) – for a review on collagen glycation

as a potential driver of connective tissue disease see Snedeker and Gautieri (2014) . For background on the chemistry of

cross-linking of collagen and elastin we refer to the study of Eyre et al. (1984) . 

The effect of the mechanical properties of AGEs was also investigated by Svensson et al. (2018) for tendons. Inhibi-

tion of the formation of AGE-induced cross-links reduces the stiffness of large arteries in rats; see Greenwald (2007) and

references therein. The study of Uzel and Buehler (2011) developed a simple molecular model of the cross-link structure

of type I collagen and showed that the presence of the cross-links resulted in strengthening of the collagen structure at

large deformations. The study of Yang et al. (2012) investigated the influence of different cross-links on the stress relax-

ation behavior of collagen fibrils. Experimental data were analyzed using a two-term Prony series, which suggested that

fast relaxation is related to the relative sliding of collagen microfibrils and that the slow relaxation process resulted from

the collagen molecules for which there is a larger number of cross-links. The paper of Davidenko et al. (2015) examined

how different levels of cross-linking of collagenous-based scaffolds effect their mechanical properties. The study of Kwansa

et al. (2016) used molecular-dynamics simulations based on collagen type I microfibril units of both uncross-linked and

cross-linked fibrils. In particular, in Kwansa et al. (2016) uniaxial tension tests were simulated to examine the effect of the

cross-linking on the elastic moduli, thus showing that the different cross-link types led to no alterations in the low-strain

moduli while the finite strain elastic modulus was significantly increased. 

One continuum-based 3D model taking account of cross-linking was proposed by Sáez et al. (2014) . The cross-links were

accounted for by a parameter which provided a weighting between the isotropic and the anisotropic response. The model

was used to fit data from uniaxial tests on pig carotid arteries for which the cross-linking was unknown, in which case the

relevance of a model accounting for cross-linking is unclear. Another 3D continuum arterial constitutive model considering

collagen content and cross-linking was proposed by Tian et al. (2016) . That approach is based on the eight-chain model,

which was developed to characterize rubber-like materials but is unsuitable for fibrous tissues. Based on a discrete network

of cross-linked biopolymer fibers ( Žagar et al., 2015 ) uses a computational approach to determine the stiffening effects of the

cross-links, while in Lin and Gu (2015) a similar computational model was used to determine the effect of cross-link density

and stiffness in a collagen gel. On the other hand, on the basis of Buehler (2006) , Buehler (2008) proposed a 1D nanoscale

model which considers the effect of different cross-link densities on the mechanical response of collagen fibrils. More details

of the effect of the cross-link structure on the mechanical properties of collagen fibrils have been considered by Depalle et al.

(2015) with particular reference to enzymatic cross-links. The review article of Eekhoff et al. (2018) describes the mechanical

effects of collagen cross-linking specifically for tendons, while the paper of Yoshida et al. (2014) documents the mechanical

properties of mouse cervical tissue with respect to collagen cross-links. The study of Chen et al. (2017) considers a collagen

network for articular cartilage based on a spring-node model of cross-linked collagen, and the authors studied changes of

the cross-link stiffness and density on the mechanical response. 

The number of cross-links has a significant effect on the measures of the elastic modulus. This suggests that material

parameters in a constitutive model should be dependent on the proportion and arrangement of cross-links within the colla-

gen structure. Two key ingredients are the collagen fiber content, as measured by, e.g., the volume fractions of collagen and

cross-links, and the relative arrangement. 

The purpose of this paper is to characterize the effect of cross-links on the basis of a phenomenological continuum model

that takes account of information about cross-links at the micro-structure level. Although there are some approaches docu-

mented in the literature, as mentioned above, there is not yet a fully 3D model available that describes, e.g., the anisotropic

response of arterial walls that takes proper account of collagen cross-linking. 

In the present study we first consider a continuum approach that involves the cross-link density and a cross-link-

dependent stiffness, which is a rather simple phenomenological approach. For this model we specialize to uniaxial extension

and examine the effects of varying cross-link densities on the mechanical response of the material. Second, we consider ex-

plicitly the relative orientation of the collagen fibers and the cross-links and their interactions using an invariant-based

energy function that incorporates contributions from the matrix material, collagen fibers, the cross-links and their interac-

tions with the fibers. For the second approach we also illustrate uniaxial extension and analyze the influence of different

cross-link arrangements and material parameters. Finally, we consider a model with two families of fibers arranged in 3D,

with the fibers aligned within each family, and with two sets of aligned cross-links connecting the fibers in each fam-

ily. This general formulation is suitable for finite element implementation, and towards this aim we provide the elasticity

tensor associated with the model in an appendix. 
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We also consider a planar specialization of the model and illustrate it by application to a simple shear deformation,

showing the effect of the cross-link orientation (relative to the fibers) and cross-link density on the shear stress versus

amount of shear deformation. The reader who requires additional information on the subject of nonlinear elasticity and

solid mechanics is referred to the monographs of Holzapfel (20 0 0) and Ogden (1997) , while a detailed explanation of the

underlying constitutive theory for strongly anisotropic solids can be found in Spencer (1984) . 

2. Model structure 

Suppose the collagen fibers are embedded within an isotropic matrix with the volume fraction � so that (1 − �) is the

volume fraction of the matrix. Let the elastic properties of the matrix and fibers be described in terms of strain-energy

functions � iso and � f , respectively. We consider � iso to depend on the isotropic invariant I 1 = tr C , where C = F T F is the

right Cauchy–Green tensor, F is the deformation gradient, and � f , the energy associated with the fiber in the direction M

in the reference configuration, to depend on I 4 = M · C M and also on a measure of the density of cross-links per unit length

of the fiber in the direction M . 

We consider the material to be incompressible ( J ≡ det F = 1 ) with the total elastic energy of this composite as 

�(I 1 , I 4 , ρ) = (1 − �)�iso (I 1 ) + ��f (I 4 , ρ) , (1)

where ρ can be thought of as the number of cross-links per unit length, subsequently referred to as the density of cross-

links with dimension 1/(length). As an example � iso can take on a neo-Hookean form, while for � f we could have k (ρ)(I 4 −
1) 2 / 2 , a standard reinforcing model. Herein k ( ρ) is the cross-link-dependent fiber stiffness. Note that the derivative k ′ should

be positive to reflect the increasing stiffness with increasing density of cross-links. Hence, from (1) , the Cauchy stress tensor

σ can be calculated as 

σ = F 
∂�

∂ F 
− p I = (1 − �) μb + 2�k (ρ)(I 4 − 1) m � m − p I , (2)

where p is the Lagrange multiplier associated with the incompressibility constraint, b denotes the left Cauchy–Green tensor,

I is the identity tensor, μ is the shear modulus of the neo-Hookean matrix and m = F M . The anisotropic term is only active

if I 4 > 1, so under compression in the fiber direction, the matrix bears the stress. 

Because of the experimental data of fibrous tissue it is useful to represent � f as an exponential, in this case given by 

�f = 

k 1 (ρ) 

2 k 2 
{ exp [ k 2 (I 4 − 1) 2 ] − 1 } , (3)

where k 1 > 0 is a parameter with the dimension of stress, while k 2 > 0 is a dimensionless parameter. The Cauchy stress of

the fibers is then denoted by σf , i.e. 

σ f = 2�k 1 (ρ)(I 4 − 1) exp [ k 2 (I 4 − 1) 2 ] m � m , (4)

while the Cauchy stress for the matrix σ iso is 

σ iso = (1 − �) μb . (5)

Let us now consider a strip of tissue in the axial/circumferential plane with two families of fibers which are arranged

symmetrically with respect to the axes, as indicated in Fig. 1 , where α is the angle between the axial direction and the

direction of each family of fibers. The direction of the second fiber family is denoted by M 

′ with m 

′ = F M 

′ . According to

Fig. 1 the matrix forms of M and M 

′ are 

[ M ] = [ cos α, sin α, 0] T , [ M 

′ ] = [ cos α, − sin α, 0] T , (6)

where we have assumed that the collagen fibers have no out-of-plane component. A push forward gives 

[ m ] = [ λ1 cos α, λ2 sin α, 0] T , [ m 

′ ] = [ λ1 cos α, −λ2 sin α, 0] T , (7)

where λ1 and λ2 are the principal stretches along the directions 1 (axial direction) and 2 (circumferential direction), respec-

tively, while, from the incompressibility condition, λ3 = λ−1 
1 

λ−1 
2 

. The invariant I 4 is then 

I 4 = M · C M = λ2 
1 cos 2 α + λ2 

2 sin 

2 α, (8)

and by symmetry we have M 

′ · C M 

′ = I 4 . 

The Cauchy stress tensor σ = σ iso + σf − p I then becomes 

σ = (1 − �) μb + 2�k 1 (ρ)(I 4 − 1) exp [ k 2 (I 4 − 1) 2 ]( m � m + m 

′ 
� m 

′ ) − p I , (9)

which is diagonal with respect to the chosen axes (no shear stress), and hence its components are 

σ11 = (1 − �) μλ2 
1 + 4�k 1 (ρ)(I 4 − 1) exp [ k 2 (I 4 − 1) 2 ] λ2 

1 cos 2 α − p, (10)

σ22 = (1 − �) μλ2 
2 + 4�k 1 (ρ)(I 4 − 1) exp [ k 2 (I 4 − 1) 2 ] λ2 

2 sin 

2 α − p, (11)

σ33 = (1 − �) μλ2 
3 − p. (12)
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Fig. 1. Sketch of a rectangular tissue strip reinforced by two in-plane families of aligned fibers symmetric with respect to its edges, with fiber angle α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We assume that the strip is under plane stress conditions with loads parallel to the circumferential and axial directions.

Then the stress σ 33 is zero which allows for p to be eliminated from (10) and (11) to give 

σ11 = (1 − �) μ(λ2 
1 − λ2 

3 ) + 4�k 1 (ρ)(I 4 − 1) exp [ k 2 (I 4 − 1) 2 ] λ2 
1 cos 2 α, (13)

σ22 = (1 − �) μ(λ2 
2 − λ2 

3 ) + 4�k 1 (ρ)(I 4 − 1) exp [ k 2 (I 4 − 1) 2 ] λ2 
2 sin 

2 α, (14)

where I 4 is given by (8) 2 , and λ3 by the incompressibility condition. Thus, σ 11 and σ 22 are given in terms of λ1 and λ2 . By

considering uniaxial stress with σ22 = 0 , Eq. (14) can in principle be solved for λ2 as a function of λ1 , and then σ 11 is a

function of λ1 alone. 

We now focus on a special case, namely α = 0 . Hence, the two families of fibers coincide and the direction of the collagen

fibers is the axial direction. For this case we choose λ = λ1 , so by symmetry λ2 = λ3 = λ−1 / 2 , and according to (8) 2 we have

I 4 = λ2 . We use the dimensionless quantities σ̄11 = σ11 /μ and k̄ 1 = k 1 /μ, and obtain 

σ̄11 = (1 − �)(λ2 − λ−1 ) + 4�k̄ 1 (ρ)(λ2 − 1) λ2 exp [ k 2 (λ
2 − 1) 2 ] (15) 

from (13) , which is an explicit expression for σ̄11 in terms of λ, where �, k̄ 1 (ρ) and k 2 need to be specified. 

The functional dependence of k̄ 1 on ρ can be modeled by any suitable function but for simplicity of illustration we

consider the quadratic equation k̄ 1 = k̄ 0 + ā ρ2 , where k̄ 0 ≥ 0 is the value of k̄ 1 at ρ = 0 and ā > 0 is a parameter with

dimension (length) 2 . 

Fig. 2 illustrates the influence of the density of cross-links on the uniaxial response in the direction of the fibers. For

particular values of the parameters we have used � = 0 . 1 , k̄ 0 = 0 . 1 , ā = 0 . 25 and k 2 = 0 . 3 . The four curves in the figure

correspond to the four values of ρ , i.e. 0, 1, 2, and 3. Note in particular the case ρ = 0 for which there are no cross-links

and the tension is supported by the fibers and the matrix without cross-links, as reflected in the lower value of the tension.

As ρ increases the response becomes stiffer. 

3. A model with aligned collagen fibers connected by separately aligned cross-links 

We consider collagen fibers to be in the direction of the unit vector E 1 and let E R be the radial unit vector normal

to that direction. In addition we consider two symmetrically disposed families of cross-links in the directions of the unit

vectors L + and L − ( L stands for link), which are defined by 

L ± = ± cos α0 E 1 + sin α0 E R , (16) 

where α defines their orientation relative to the collagen fiber direction; see Fig. 3 . 
0 
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Fig. 2. Plots of the dimensionless Cauchy stress σ̄11 versus the stretch λ for four different values of density of cross-links ρ , including ρ = 0 (no cross-links). 

Fig. 3. (a) Aligned collagen fibers in the direction E 1 with two families of aligned interconnecting cross-links with directions L + and L − making an angle 

α0 with E 1 . (b) Focus on a pair of cross-links in (a), indicating their rotational symmetry about E 1 with the radial vector E R . 

 

 

 

 

 

 

 

 

 

 

 

A uniaxial deformation with stretch λ is applied along the collagen fibers so that by symmetry and considering the

material to be incompressible the deformation gradient has the form 

F = λE 1 � E 1 + λ−1 / 2 E R � E R . (17)

We define e = F E 1 = λE 1 and e r = F E R = λ−1 / 2 E R as the push-forwards of E 1 and E R under the deformation. The corre-

sponding push-forwards of L + and L − are then 

l 
± = F L ± = ±λ cos α0 E 1 + λ−1 / 2 sin α0 E R . (18)

For this special deformation the isotropic invariant is given by I 1 = tr C = λ2 + 2 λ−1 , while the squares of the stretches

in the directions E 1 , L 
+ and L − are 

I 4 = e · e = C E 1 · E 1 = λ2 , I = l 
± · l 

± = λ2 cos 2 α0 + λ−1 sin 

2 α0 , (19)

wherein the invariants I 4 and I are defined. For the cross-links to be extended, i.e. when λ> 1, α0 has to be restricted

according to 

cos 2 α0 > 

1 

λ2 + λ + 1 

, (20)

which is satisfied for all λ> 1 if cos α0 > 1 / 
√ 

3 . The invariant I 4 is the square of the stretch in the collagen fibers and I is

the square of the stretch in each of the cross-link directions. We also define the coupling between the collagen fiber and

cross-link directions by the quantities I + 
8 

and I −
8 

, which are given by 

I ± = l 
± · e = ±λ2 cos α0 . (21)
8 

Please cite this article as: G.A. Holzapfel and R.W. Ogden, An arterial constitutive model accounting for collagen content 

and cross-linking, Journal of the Mechanics and Physics of Solids, https://doi.org/10.1016/j.jmps.2019.103682 

https://doi.org/10.1016/j.jmps.2019.103682


6 G.A. Holzapfel and R.W. Ogden / Journal of the Mechanics and Physics of Solids xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: MPS [m3Gsc; August 16, 2019;16:12 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These are not themselves invariants (their sign changes under reversal of either e or l ± ), but (I + 
8 
) 2 = (I −

8 
) 2 is invariant. The

values of the invariants I 1 , I 4 , and I and the quantities I ±
8 

in the reference configuration are 3, 1, 1 and ± cos α0 , respectively.

We now consider a strain-energy function � , which is a function of I 1 , I 4 , I , I 
+ 
8 

and I −
8 

. Specifically we consider � to have

the form 

� = (1 − � − �	 )�iso (I 1 ) + ��f (I 4 ) + �	 [�c (I) + �fc (I + 8 ) + �fc (I −8 )] , (22)

where � and �	 denote the volume fractions of the collagen fibers and the cross-links, respectively. 

The functions � iso , � f and �c are the energies stored in the matrix material, the collagen fibers and the cross-links,

respectively, while the two � fc -terms represent the interaction energies between the collagen fibers and the cross-links.

Noting that � ′ 
fc 
(I −

8 
) = −� ′ 

fc 
(I + 

8 
) , the Cauchy stress tensor σ can be written in the form 

σ = −p I + 2(1 − � − �	 )� ′ 
iso (I 1 ) b + 2�� ′ 

f (I 4 ) e � e 

+�	 { 2� ′ 
c ( l 

+ 
� l 

+ + l 
−

� l 
−
) + � ′ 

fc (I + 8 )[ e � l 
+ + l 

+ 
� e − ( e � l 

− + l 
−

� e )] } , (23) 

where we have used the abbreviations 

� ′ 
iso (I 1 ) = 

∂�iso 

∂ I 1 
, � ′ 

f (I 4 ) = 

∂�f 

∂ I 4 
, � ′ 

c (I) = 

∂�c 

∂ I 
, � ′ 

fc (I + 8 ) = 

∂�fc 

∂ I + 
8 

. (24) 

Now, for the subsequent component forms we need 

e � l 
+ + l 

+ 
� e − ( e � l 

− + l 
−

� e ) = 4 λ2 cos α0 E 1 � E 1 . (25) 

Hence, the stress components are 

σ11 = −p + 2(1 − � − �	 )� ′ 
iso λ

2 + 2�� ′ 
f λ

2 + 4�	 � ′ 
c λ

2 cos 2 α0 + 4�	 � ′ 
fc λ

2 cos α0 , (26) 

0 = σrr = −p + 2(1 − � − �	 )� ′ 
iso λ

−1 + 4�	 � ′ 
c λ

−1 sin 

2 α0 , (27) 

where the argument of � fc is I + 
8 

. By eliminating the Lagrange multiplier p by subtraction of (27) from (26) we obtain the

uniaxial stress σ = σ11 as 

σ = 2(1 − � − �	 )� ′ 
iso (λ

2 − λ−1 ) + 2�� ′ 
f λ

2 + 4�	 � ′ 
c (λ

2 cos 2 α0 − λ−1 sin 

2 α0 ) + 4�	 � ′ 
fc λ

2 cos α0 . (28) 

Now let us consider some specific energy functions. For the matrix material we use the isotropic neo-Hookean material 

�iso = 

1 

2 

μ(I 1 − 3) , (29) 

where the constant μ is a positive parameter, and for the collagen fibers we use the standard exponential form, i.e. 

�f = 

k 1 
2 k 2 

{ exp [ k 2 (I 4 − 1) 2 ] − 1 } , (30) 

where k 1 > 0 is a stress-like constant and k 2 > 0 is a dimensionless constant. 

There is very little if any information available about the mechanical properties of cross-links. Therefore, for simplicity

of illustration, we make the assumption that �c has the quadratic reinforcing form 

�c = 

1 

2 

ν(I − 1) 2 , (31) 

where ν is a positive parameter with the dimension of stress that measures the strength of the cross-links, and is referred

to as the cross-link parameter. Note that the constant k 1 in (30) is different from that in (3) , and we now write it as k 0 
temporarily. Then, by comparing the quadratic approximation of (3) with (30) and (31) we obtain ν + k 0 = k 1 (ρ) , which

relates the cross-link stiffness ν to the cross-link density of the first model. Similarly to (31) , for � fc we take the form 

�fc = 

1 

2 

κ(I + 8 − cos α0 ) 
2 = 

1 

2 

κ(I −8 + cos α0 ) 
2 , (32) 

where κ is also a positive stress-like parameter. It measures the strength of the interaction between the fibers and the

cross-links. Hence, by using (24) and according to (28) , the Cauchy stress σ has the form 

σ = (1 − � − �	 ) μ(λ2 − λ−1 ) + 2�k 1 (λ
2 − 1) λ2 exp [ k 2 (λ

2 − 1) 2 ] 

+4�	 ν(λ2 cos 2 α0 + λ−1 sin 

2 α0 − 1)(λ2 cos 2 α0 − λ−1 sin 

2 α0 ) + 4�	 κ(λ2 − 1) λ2 cos 2 α0 . (33) 

In Fig. 4 we plot the dimensionless stress σ̄ = σ/μ against the stretch λ for a representative selection of the parameters

involved in (33) . Fig. 4 (a) shows how the response depends on the orientation α0 of the cross-links for a fixed value of

ν̄ = ν/μ, while Fig. 4 (b) illustrates the dependence on ν̄ for a fixed value of α0 , in each case for fixed values of the other

parameters, as specified in the caption of Fig. 4 . It is clear that the cross-links stiffen the response. In Fig. 4 (a) the response

becomes stiffer as the cross-links become more aligned with the fibers, much stiffer than in the absence of cross-links,

while Fig. 4 (b) shows that an increase in the density of the cross-links likewise stiffens the response. 
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Fig. 4. Plots of the dimensionless Cauchy stress σ̄ = σ/μ versus the stretch λ: (a) for three values of the cross-link angle α0 ( π /16, π /6, π /4) compared 

with the plot for the case of no cross-links. On the basis of (33) the following parameters were used � = 0 . 1 , �	 = 0 . 15 , k̄ 1 = k 1 /μ = 1 , k 2 = 0 . 3 , ν̄ = 

ν/μ = 5 , κ̄ = κ/μ = 1 ; (b) for four values of the dimensionless cross-link parameter ν̄ (10.0, 5.0, 1.0, 0). On the basis of (33) the following parameters 

were used � = 0 . 2 , �	 = 0 . 2 , k̄ 1 = 1 , k 2 = 0 . 16 , α0 = π/ 6 , κ̄ = 1 . 

 

 

 

 

 

 

4. Formulation for a general fiber direction 

In the previous section we considered a special deformation with the fiber directions aligned with the axis E 1 of exten-

sion. In the present section we generalize this for an arbitrary fiber direction and the corresponding cross-links. Consider

the axis E 1 and the associated rectangular Cartesian axes E 2 and E 3 , which are depicted in Fig. 5 . To arrange the initial

general geometry we rotate the system by means of the rotation tensor Q such that the unit basis vectors E i , i = 1 , 2 , 3 ,

become 

e i = Q E i , i = 1 , 2 , 3 , (34)

where 

Q = e 1 � E 1 + e 2 � E 2 + e 3 � E 3 , (35)
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Fig. 5. Rectangular Cartesian axes E 1 , E 2 , E 3 transformed into orthonormal axes e 1 , e 2 , e 3 , where the transformation is a function of the two spherical 

polar angles θ and φ. E 1 represents the fiber direction and, according to (39) , L ±0 are the directions of representative cross-links, which are rotationally 

symmetric with respect to ± E 1 . E R represents an arbitrary unit vector normal to E 1 . 

 

 

 

 

 

 

and hence with respect to spherical polar coordinates θ and φ shown in Fig. 5 

e 1 = sin θ cos φE 1 + sin θ sin φE 2 + cos θE 3 , (36) 

e 2 = cos θ cos φE 1 + cos θ sin φE 2 − sin θE 3 , (37) 

e 3 = − sin φE 1 + cos φE 2 , (38) 

with e 1 now identified as the collagen fiber direction. 

Here the directions of two symmetrically disposed families of cross-links are denoted by the unit vectors L + 0 and L −0 , as

distinct from the notation L ± used in (16) , so that 

L ±0 = ± cos α0 E 1 + sin α0 E R , (39) 

where E R , which is an arbitrary vector orthogonal to E 1 , can be written as 

E R = cos φ0 E 2 + sin φ0 E 3 , (40) 

with φ0 arbitrary. Then we define L ± according to 

L ± = Q L ±0 = ± cos α0 e 1 + sin α0 e r , e r = Q E R = cos φ0 e 2 + sin φ0 e 3 . (41) 

Now on application of a deformation gradient F the invariant I 4 associated with the fiber direction is given by 

I 4 = ( F e 1 ) · ( F e 1 ) = ( C e 1 ) · e 1 . (42) 

It follows from (41) 1 that 

F L ± = ± cos α0 F e 1 + sin α0 F e r . (43) 

Hence, the invariants I ± , and the quantities I ±
8 

describing the coupling between the collagen fiber and cross-link directions

are 

I ± = ( F L ±) · ( F L ±) = c 2 0 I 4 ± 2 s 0 c 0 ( C e 1 ) · e r + s 2 0 ( C e r ) · e r , (44)

I ±8 = ( F e 1 ) · ( F L ±) = ±c 0 I 4 + s 0 ( C e 1 ) · e r , (45)

where for conciseness we have written s 0 = sin α0 and c 0 = cos α0 . Note that, in general, I + � = I − and I + 
8 

� = −I −
8 

, which is

unlike the case of the uniaxial tension considered in Section 3 . 

Next we note the derivatives of the invariants I 4 , I 
± and the quantities I ±

8 
with respect to the right Cauchy–Green tensor

C , i.e. 

∂ I 4 = e 1 � e 1 , (46) 

∂ C 

Please cite this article as: G.A. Holzapfel and R.W. Ogden, An arterial constitutive model accounting for collagen content 

and cross-linking, Journal of the Mechanics and Physics of Solids, https://doi.org/10.1016/j.jmps.2019.103682 

https://doi.org/10.1016/j.jmps.2019.103682


G.A. Holzapfel and R.W. Ogden / Journal of the Mechanics and Physics of Solids xxx (xxxx) xxx 9 

ARTICLE IN PRESS 

JID: MPS [m3Gsc; August 16, 2019;16:12 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ I ±

∂ C 

= c 2 0 e 1 � e 1 ± s 0 c 0 ( e 1 � e r + e r � e 1 ) + s 2 0 e r � e r , (47)

∂ I ±
8 

∂ C 

= ±c 0 e 1 � e 1 + 

1 

2 

s 0 ( e 1 � e r + e r � e 1 ) . (48)

Now let us consider the strain-energy function �(I 1 , I 4 , I 
+ , I −, I + 

8 
, I −

8 
) so that 

σ = −p I + 2 ψ 1 b + 2 ψ 4 F e 1 � F e 1 + 2 ψ I + [ c 
2 
0 F e 1 � F e 1 + s 0 c 0 ( F e 1 � F e r + F e r � F e 1 ) + s 2 0 F e r � F e r ] 

+2 ψ I − [ c 2 0 F e 1 � F e 1 − s 0 c 0 ( F e 1 � F e r + F e r � F e 1 ) + s 2 0 F e r � F e r ] 

+ ψ 8 + [2 c 0 F e 1 � F e 1 + s 0 ( F e 1 � F e r + F e r � F e 1 )] + ψ 8 − [ −2 c 0 F e 1 � F e 1 + s 0 ( F e 1 � F e r + F e r � F e 1 )] , (49)

where we have used the abbreviations ψ 1 = ∂ �/∂ I 1 , ψ 4 = ∂ �/∂ I 4 , ψ I ± = ∂ �/∂ I ± and ψ 8 ± = ∂ �/∂ I ±
8 

. This is the most

general Cauchy stress expression for parallel collagen fibers with cross-links of the type indicated. For the related elasticity

tensor in the material description see the Appendix. 

To recover the uniaxial case ( Section 3 ) from the general equations in this section we have e 1 = E 1 for uniaxial tension,

and consequently 

F e 1 = λe 1 , F e r = λ−1 / 2 e r , F L ± = ±c 0 λe 1 + s 0 λ
−1 / 2 e r . (50)

Then, with I 4 = λ2 we obtain from (44) and (45) 

I ≡ I ± = c 2 0 λ
2 + s 2 0 λ

−1 , I 8 = I + 8 = c 0 λ
2 , I −8 = −I + 8 . (51)

Then 

ψ I = ψ I + = ψ I − , ψ 8 + = −ψ 8 − = ψ 8 , (52)

and (49) specializes to 

σ = −p I + 2 ψ 1 (λ
2 e 1 � e 1 + λ−1 e r � e r ) + 2 ψ 4 λ

2 e 1 � e 1 + 4 ψ I (c 2 0 λ
2 e 1 � e 1 + s 2 0 λ

−1 e r � e r ) + 4 ψ 8 c 0 λ
2 e 1 � e 1 . 

(53)

The related components are 

σ = σ11 = −p + 2 ψ 1 λ
2 + 2 ψ 4 λ

2 + 4 ψ I c 
2 
0 λ

2 + 4 ψ 8 c 0 λ
2 , (54)

0 = σrr = −p + 2 ψ 1 λ
−1 + 4 ψ I s 

2 
0 λ

−1 . (55)

By eliminating the Lagrange multiplier p we obtain 

σ = 2 ψ 1 (λ
2 − λ−1 ) + 2 ψ 4 λ

2 + 4 ψ I (c 2 0 λ
2 − s 2 0 λ

−1 ) + 4 ψ 8 c 0 λ
2 . (56)

Now let us use the specific strain-energy functions (29) –(32) , i.e. 

� = 

1 

2 

μ(I 1 − 3) + 

k 1 
2 k 2 

{ exp [ k 2 (I 4 − 1) 2 ] − 1 } + 

1 

2 

ν(I − 1) 2 + 

1 

2 

κ(I 8 − c 0 ) 
2 , (57)

which gives with (56) the same expression for σ as in (33) except that here the volume fractions are incorporated into the

material constants μ, k 1 , ν and κ . 

4.1. Planar formulation 

Next we consider the situation in which the fibers and cross-links are restricted to the ( E 1 , E 2 ) plane and we define the

fiber direction e 1 and its normal e r as 

e 1 = cos αE 1 + sin αE 2 , e r = − sin αE 1 + cos αE 2 , (58)

where α is the angle between the fiber direction and the E 1 axis (see Fig. 6 ). 

With respect to e 1 and e r the cross-link directions L ± are defined by 

L ± = ±c 0 e 1 + s 0 e r , (59)

which has the same form as (41) 1 . The invariant I 4 = ( C e 1 ) · e 1 , as in (42) 2 , but with e 1 now defined by (58) . We also

have 

F L ± = ±c 0 F e 1 + s 0 F e r , (60)

which is the same expression as (43) and the invariants I ± and the quantities I ±
8 

are again given by (44) and (45) . The

Cauchy stress tensor σ has the same form (49) as in 3D but now restricted to 2D. 
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Fig. 6. Illustration showing a planar version of Fig. 5 . In particular, e 1 represents the fiber direction with unit normal e r with respect to background axes 

E 1 and E 2 , while e 1 makes an angle α with respect to the E 1 -direction. L ± represent the directions of two families of cross-links, and L ± make an angle 

α0 with respect to the ± e 1 direction. 

 

 

4.1.1. Simple shear case 

For simple shear in the E 1 direction in the considered plane, the deformation gradient is given by F = I + γ E 1 � E 2 ,

where γ is the amount of shear. It follows that 

F e 1 = e 1 + γ sin αE 1 , F e r = e r + γ cos αE 1 . (61) 

The invariant I 4 = ( C E 1 ) · E 1 is 

I 4 = 1 + γ sin 2 α + γ 2 sin 

2 α, (62) 

while the required expressions ( C e r ) · e r and ( C e 1 ) · e r are given by 

( C e r ) · e r = 1 − γ sin 2 α + γ 2 cos 2 α, ( C e 1 ) · e r = γ cos 2 α + γ 2 sin α cos α. (63) 

On substitution of (63) into (44) 2 and (45) 2 we obtain 

I ± = 1 + γ sin 2(α ± α0 ) + γ 2 sin 

2 (α ± α0 ) , (64) 

I ±8 = ±c 0 + γ sin (α0 ± 2 α) + γ 2 sin α sin (α0 ± α) . (65) 

From (49) the components of the Cauchy stress are then given by 

σ11 = −p + 2 ψ 1 (1 + γ 2 ) + 2[ ψ 4 + c 2 0 (ψ I + + ψ I − ) + c 0 (ψ 8 + − ψ 8 − )](c + γ s ) 2 

+2 s 0 [2 c 0 (ψ I + − ψ I − ) + ψ 8 + + ψ 8 − ][(γ 2 − 1) sc + γ (c 2 − s 2 )] + 2 s 2 0 (ψ I + + ψ I − )(γ c − s ) 2 , (66) 

σ22 = −p + 2 ψ 1 + 2[ ψ 4 + c 2 0 (ψ I + + ψ I − ) + c 0 (ψ 8 + − ψ 8 − )] s 2 

+2 s 0 [2 c 0 (ψ I + − ψ I − ) + ψ 8 + + ψ 8 − ] sc + 2 s 2 0 (ψ I + + ψ I − ) c 2 , (67) 

σ12 = 2 ψ 1 γ + 2[ ψ 4 + c 2 0 (ψ I + + ψ I − ) + c 0 (ψ 8 + − ψ 8 − )] s (c + γ s ) + s 0 [2 c 0 (ψ I + − ψ I − ) + ψ 8 + + ψ 8 − ](c 2 − s 2 + 2 γ sc) 

+2 s 2 0 (ψ I + + ψ I − ) c(γ c − s ) ≡ ∂�

∂γ
, (68) 

where for conciseness we have written s = sin α and c = cos α. 

For illustrative purposes we now consider the model strain-energy function 

� = 

1 

2 

μ(I 1 − 3) + 

k 1 
2 k 2 

{ exp [ k 2 (I 4 − 1) 2 ] − 1 } + 

1 

2 

ν(I + − 1) 2 + 

1 

2 

ν(I − − 1) 2 + 

1 

2 

κ(I + 8 − c 0 ) 
2 + 

1 

2 

κ(I −8 + c 0 ) 
2 . (69) 

from which it follows that 

ψ I + + ψ I − = 2 νγ [2 sc(c 2 0 − s 2 0 ) + γ (s 2 0 c 
2 + s 2 c 2 0 )] , (70)

ψ I + − ψ I − = 4 νγ s 0 c 0 (c 2 − s 2 + γ sc) , (71) 
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ψ 8 + + ψ 8 − = 2 κγ s 0 (c 2 − s 2 + γ sc) , (72)

ψ 8 + − ψ 8 − = 2 κγ sc 0 (2 c + γ s ) . (73)

Hence, from (68) we obtain 

σ12 = μγ + 2 k 1 exp [ k 2 γ
2 s 2 (2 c + γ s ) 2 ] s 2 (c + γ s )(2 c + γ s ) γ + 4 νγ { 2 s 2 c 2 (c 2 0 − s 2 0 ) 

2 + 2 s 2 0 c 
2 
0 (c 2 − s 2 ) 2 

+ 3 scγ [(c 2 0 − s 2 0 )(c 2 0 s 
2 + s 2 0 c 

2 ) + 2 s 2 0 c 
2 
0 (c 2 − s 2 )] + γ 2 [(c 2 0 s 

2 + s 2 0 c 
2 ) 2 + 4 s 2 0 c 

2 
0 s 

2 c 2 ] } 
+ 2 κγ { s 2 0 + 4 s 2 c 2 (c 2 0 − s 2 0 ) + 3 scγ [(s 2 0 c 

2 + s 2 c 2 0 + s 2 (c 2 0 − s 2 0 )] + 2 γ 2 s 2 (s 2 0 c 
2 + s 2 c 2 0 ) } . (74)

In Fig. 7 we plot the dimensionless shear stress σ̄12 = σ12 /μ from (74) against the amount of shear γ in order to illustrate

the dependence on the various parameters. Fig. 7 (a) shows how the results depend on the angle α0 of the cross-links relative

to the fiber direction for a fixed value of the fiber angle α and each of the other parameters, as specified in the caption.
Fig. 7. Plots of the dimensionless Cauchy shear stress σ̄12 = σ12 /μ versus the amount of shear γ : (a) for three values of the cross-link angle α0 ( π /12, 

π /6, π /4) compared with the plot for the case of no cross-links. On the basis of (74) the following parameters were used: k̄ 1 = k 1 /μ = 1 , ν̄ = ν/μ = 2 , 

κ̄ = κ/μ = 1 , α = π/ 3 , k 2 = 0 . 1 ; (b) for four values of the dimensionless cross-link parameter ν̄ (8.0, 5.0, 2.0, 0). On the basis of (74) the following 

parameters were used: k̄ 1 = 1 , κ̄ = 1 , α0 = π/ 6 , α = π/ 3 , k 2 = 0 . 1 . 
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Analogously to Fig. 4 , Fig. 7 (b) illustrates the dependence on the density of cross-links via the dimensionless parameter

ν̄ and fixed values of each of the other parameters. Once again it is clear that the response becomes stiffer as either the

cross-link direction approaches the fiber direction or the density of cross-links increases. 

5. Concluding remarks 

In this paper we have developed two basic and preliminary continuum models that include the effects of collagen fiber

cross-links on the elastic behavior of fibrous soft biological tissues. The first approach is a simple and purely phenomeno-

logical extension of a standard model that is used to describe the anisotropic behavior of fibrous tissues by including the

dependence on the cross-link density in the anisotropic stiffness parameter of the standard model. This model has been

examined for the case of homogeneous simple tension and it illustrates how the stiffness of the material increases with

increases in the density of cross-links. 

The second model is more general and aims to account for both the relative orientation and stiffnesses of (two families

of) collagen fibers and cross-links, and their coupling using an invariant-based strain-energy function. The model is first

applied to the case of simple tension in the fiber direction, which shows how the relative orientation of the cross-links

and the fibers, and the cross-link stiffness affect the uniaxial response. Then, a more general 3D form with an arbitrary

fiber direction and with two symmetrically disposed families of cross-links is provided, which is also suitable for finite

element implementation, as needed for solving more complex 3D boundary-value problems. For the purpose of such an

implementation, the elasticity tensor for the model in the material description is also provided. 

The 2D (plane strain) specialization of the model is applied to the case of a simple shear deformation, and this shows

again how the relative orientation of the cross-links and the fibers increases the overall stiffness as the relative orientation

is reduced, as well as the cross-link stiffness. 

As indicated above, the approaches presented here form initial attempts to incorporate the mechanical properties of

cross-links within a continuum model of collagenous soft tissues. This will need further developments as the mechanical

properties of cross-links themselves and their interactions with the collagen fibers are determined from experiments, infor-

mation that is not currently available. 
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Appendix 

The elasticity tensor C in the material description is defined by 

C = 4 

∂ 2 �

∂ C ∂ C 

. (75) 

First we introduce some notation and define the following second-order tensors in terms of the basis vectors e 1 and e r , i.e.

A 1 = e 1 � e 1 , A r = e r � e r , A 1 r = 

1 

2 

( e 1 � e r + e r � e 1 ) = A r1 . (76) 

Then, we can write 

∂ 2 �

∂ C ∂ C 

= a 1 I � I + a 2 ( I � A 1 + A 1 � I ) + a 3 A 1 � A 1 + a 4 ( I � A r + A r � I ) 

+ a 5 ( I � A 1 r + A 1 r � I ) + a 6 ( A 1 � A r + A r � A 1 ) + a 7 A r � A r 

+ a 8 ( A 1 � A 1 r + A 1 r � A 1 ) + a 9 ( A r � A 1 r + A 1 r � A r ) + a 10 A 1 r � A 1 r , (77) 

where 

a 1 = ψ 11 , a 2 = ψ 14 + c 2 0 (ψ 1 I + + ψ 1 I − ) + c 0 (ψ 18 + + ψ 18 − ) , (78)

a 3 = ψ 44 + 2 c 2 0 (ψ 4 I + + ψ 4 I − ) + c 4 0 (ψ I + I + + ψ I −I − + 2 ψ I + I − ) + 2 c 0 (ψ 48 + − ψ 48 − ) + c 2 0 (ψ 8 + 8 + + ψ 8 −8 − − 2 ψ 8 + 8 − ) 

+2 c 3 0 (ψ I + 8 + + ψ I −8 + − ψ I + 8 − − ψ I −8 − ) , (79) 

a 4 = s 2 0 (ψ 1 I + + ψ 1 I − ) , a 5 = s 0 [2 c 0 (ψ 1 I + − ψ 1 I − ) + ψ 18 + + ψ 18 − ] , (80)

a 6 = s 2 0 [ ψ 4 I + + ψ 4 I − + c 2 0 (ψ I + I + + ψ I −I − + 2 ψ I + I − ) + c 0 (ψ I + 8 + + ψ I −8 + − ψ I + 8 − − ψ I −8 − ) , (81) 
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a 7 = s 4 0 (ψ I + I + + ψ I −I − + 2 ψ I + I − ) , (82)

a 8 = s 0 [2 c 0 (ψ 4 I + − ψ 4 I − ) + 2 c 3 0 (ψ I + I + − ψ I −I − ) + ψ 48 + + ψ 48 −

+ c 0 (ψ 8 + 8 + − ψ 8 −8 − ) + c 2 0 (3 ψ I + 8 + − ψ I −8 + − ψ I + 8 − + 3 ψ I −8 − )] , (83)

a 9 = s 3 0 [2 c 0 (ψ I + I + − ψ I −I − ) + ψ I + 8 + + ψ I −8 + + ψ I + 8 − + ψ I −8 − ] , (84)

a 10 = s 2 0 [4 c 2 0 (ψ I + I + + ψ I −I − − 2 ψ I + I − ) + ψ 8 + 8 + + ψ 8 −8 − + 2 ψ 8 + 8 − + 4 c 0 (ψ I + 8 + − ψ I −8 + + ψ I + 8 − − ψ I −8 − )] . (85)

For notational simplicity the indices 1, 4, 8 + and 8 − in ψ stand for I 1 , I 4 , I + 
8 

and I −
8 

, respectively, and we have introduced

the abbreviation ψ •	 = ∂ 2 �/∂ (•) ∂ (	 ) . 
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